Clifford Algebra Note 5 TOMONAGA’s Super Multi-time Theory

Clifford Algebra

 

Note 5

TOMONAGA’s Super Multi-time Theory

 

TANAKA Akio

 

1

State vector     ψ

Time     t

Electromagnetic field     A

Hamiltonian     H

iψ(t) = (t),   ψ(0) = ψ     (1)

2

Coordinate     x

Momentum     p

Electron     N in number

Electromagnetic field     A

H-em     Electromagnetic field Hamiltonian

[ H-em + Hn ( xn, pn, A (xn) ) +   ] ψ(t) = 0     (2)

3

u(t) = exp{ H-emt }

A (xn, t) = u(t) A (xn) u(t)-1

Φ(t) = u(t) ψ(t)

[ Hn ( xn, pn, A (xn, t) ) +   ] Φ(t) = 0     (3)

4 < Dirac’s multi-time theory- Time variant in number N >

[Hn ( xn, pn, A (xn, tn) ) +   ] Φ( x1, t1; … ; xN, tN ) = 0     (4)

5

Unitary transformation

U (t) = exp {  (H1 + H2 ) t }    

Schrödinger equation

[H1 + H2 + H12+   ] ψ(t) = 0    

Independent time variant txyz at each point in space 

[ H12 (x, y, z, txyz ) +   ] Φ(t) = 0     (5)

6 < Tomonaga’s super multi-time theory>

Super curved surface     C

Point on C     P

4-dimensional volume’s transformation of C     CP

Infinite small variation of state vectorΦ[C] = Φ[Txyz]      Φ[C]

[ H12 ( P ) +   ] Φ[C] = 0     (6)

 

[References]

Aurora Theory / Dictoron, Time and Symmetry / Tokyo October 6, 2006

Aurora Theory / Word, Phrase and Sentence / Tokyo October 25, 2006

Aurora Theory / Distance and Time 5th Time for KARCEVSKIJ / Tokyo October 28, 2006

Language and Spacetime / Time Flow in Word For KOBARI Akihiro and His Time / Tokyo May 3, 2007

Invitation by Theme-Time / Data Arranged at Tokyo January 6, 2008

Aurora Theory

Language and Spacetime

 

Tokyo January 25, 2008

Sekinan Research Field of Language

www.sekinan.com